Разделы

ИТ в госсекторе Электроника

Ученые из НИТУ «МИСиС» первыми в мире создали управляемые двумерные полупроводники

Коллективу ученых из НИТУ «МИСиС» (Москва, Россия), Национального института материаловедения (NIMS, Япония), Пекинского транспортного университета (КНР) и Технологического университета Квинсленда (Австралия) под руководством профессора Дмитрия Гольберга впервые в мире удалось решить проблему создания двумерных материалов с контролируемыми свойствами.

В теоретической части работы использовались ресурсы суперкомпьютерного кластера «Cherry» НИТУ «МИСиС». Практическая часть работы выполнялась в Японии и Австралии.

Работа сделана в рамках инфраструктурного проекта «Теоретическое материаловедение наноструктур», созданного НИТУ «МИСиС» в рамках Программы повышения конкурентоспособности ведущих российских университетов среди ведущих мировых научно-образовательных центров (Проект 5-100).

В работе, опубликованной в журнале Advanced Materials, ученые описывают первый в мире эксперимент по контролируемому созданию материала на основе частично окисленного нитрида бора. Материал изготавливается посредством постепенного добавления кислорода в структуру двумерного нитрида бора.

До сих пор контролируемо менять ширину запрещенной зоны удавалось, лишь внедряя в нитрид бора атомы углерода, однако этот метод оказался очень сложным и дорогостоящим. Метод частично окисления оказался намного более простым и дешевым.

После синтеза ученые измеряли ширину запрещенной зоны частично окисленного нитрида бора в зависимости от содержания в решетке атомов кислорода. В ходе экспериментов удалось подтвердить на опытных образцах теоретически предсказанные свойства кристаллической решетки нитрида бора для нескольких уровней содержания кислорода.

«Главное достижение нашей работы в том, что нам удалось успешно совместить методы теоретического материаловедения с великолепной работой коллег экспериментаторов, – рассказали соавторы работы, научные сотрудники лаборатории «Неорганические наноматериалы» НИТУ «МИСиС», доктор физико-математических наук Павел Сорокин и кандидат физико-математических наук Дмитрий Квашнин. – Наше тесное сотрудничество вылилось в то, что с одной стороны был успешно синтезирован новый материал на основе нитрида бора с возможностью контроля ширины запрещенной зоны, а с другой стороны особенности его свойств были подробным образом изучены теоретически, при этом экспериментальные данные были успешно подтверждены теорией».

При помощи комплексного исследования полученного материала ученым удалось понять, как и почему меняется ширина запрещенной зоны в частично окисленном нитриде бора: «Основной вклад в уменьшение ширины запрещенной зоны вносит наличие гидроксильных групп, расположенных на краях нового материала. Наличие такого слоя приводит к формированию дополнительных электронных уровней вблизи энергии Ферми, что и приводит к меньшей ширине запрещенной зоны, наблюдаемой экспериментально», – отметил Павел Сорокин

Ученый подчеркнул, что такой способ уменьшения ширины запрещенной зоны может привести к активному использованию данного материала в таких областях науки и техники, как фотовольтаика, оптоэлектроника, хранение энергии

Владимир Бахур